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Abstract

Complex real-world (biological) systems often exhibit intrinsically non-stationary
behaviour of their temporal characteristics. We discuss local measures of scaling
which can capture and reveal changes in a system’s behaviour. Such measures offer
increased insight into a system’s behaviour and are superior to global, spectral
characteristics like the multifractal spectrum. They are, however, often inadequate
for fully understanding and modeling the phenomenon. We illustrate an attempt
to capture complex model characteristics by analysing (multiple order) correlations
in a high dimensional space of parameters of the (biological) system being studied.
Both temporal information, among others local scaling information, and external
descriptors/parameters, possibly influencing system’s state, are used to span the
search space investigated for the presence of a (sub-)optimal model. As an example,
we use fetal heartbeat monitored during labour.

1 Introduction

Universal descriptions of complex phenomena, like that using multifractal cas-
cades, may prove to be inadequate for a complete description, even if valid
on a restricted temporal range or in isolated or free-running conditions. The
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inadequacy of such models is often demonstrated by non-stationarity of their
characteristics. This aspect is usually neglected (through the selection of ex-
amples supporting the theory) or filtered out.

However, failure of the model to explain the phenomenon fully may well pro-
vide significant insight into the dependence of the system on the external
conditions. Structures emerging from the non-stationarity of the (most) so-
phisticated description available very likely indicate that more dimensional
embedding may be needed for a proper description of the system under study.
Such embedding and the right parameter choice for the more adequate model
may not be easy to identify. In science, this search trajectory for better mod-
els has been routinely carried out at the cost of repeated experiments un-
der varied input or environment conditions (or modes of interaction with
the environment) [1]. Such a search for a better model in, for example, bio-
medical science may be shortened now, since data for many experiments is
digitally /automatically stored and available for widespread analysis.

Of course, computerised analysis of data and model fitting is not new. The
computer has been used to do analysis or simulation in the natural sciences for
some forty years. But until very recently, in the natural sciences the computer
has only been used to provide answers to hypotheses involving relatively few
degrees of freedom. In any instance of a more dimensional problem, a human
expert had to investigate each and every output of the run of the program.
Conclusions from the series of analyses were then drawn and theories posed,
subject to testing. This process, usually tedious, is near to or just impossible
when the volume of data and the dimensionality of the problem increase. It
is not always possible to think of heuristics which would shorten the search
path for interesting relationships or take a cross-section of the data along the
most promising plane of dimensions.

However, due to the modern technology of data analysis and reasoning, such
‘automated research’ may be possible.! By incorporating the most advanced
models available with explicitly identified instances where they fail to describe
the model (as is manifested in non-stationarity), new theories can be generated
and (dis-)proven by the system. The scientist, of course, remains in the centre
of such an automated research trajectory - in fact the automated reasoning
is merely meant to add to the expert’s guided process, as a tool capturing,
(dis-)proving and visualising the non-evident dependences.

In this paper, we first briefly present the characterisation of time series by a lo-
cal version of the Hurst exponent in section 2. Next, using the example of fetal
heartbeat during labour, we suggest capturing the non-stationary behaviour
of the local A with a simple heuristic - linear integral (cumulative indicator).

1 See [2] for introduction to Bayesian techniques.



Finally, in section 4, we suggest the recovery of multiple order dependencies
between the cumulative product (integral) of the non-stationarity of local h
and other characteristics of the fetal heartbeat, with external information on
the fetal outcome and about the pregnancy. The paper closes with conclusions
and suggestions for future developments.

2 Local Holder exponent h makes possible the detection of non-
stationarities in multifractal characteristics of complex systems

For the stationary fractional Brownian noise, we would expect that any local
estimate of the Hurst exponent A is equal to the mean or global Hurst ex-
ponent H. Of course, for finite length samples and single realisations, we will
have fluctuations in the local hA exponent but they should prove to be marginal
and diminish with increasing statistics. This will not be the case with a mul-
tifractal. The local h will show a wide range of exponents regardless of the
resolution and sample size [3-5]. What we would expect to remain unchanged

(or stationary) for the multifractal (cascade) is the multifractal spectrum of
h, i.e. D(h).

In figure 1, an example time series with the local Hurst exponent indicated
in colour are shown. We have chosen the record of healthy (adult) heartbeat
intervals and white noise for comparison. The background colour indicates
the Holder exponent A - the local counterpart to the Hurst exponent H. It is
centred at the mean value corresponding with the Hurst exponent at green.
The colour goes towards blue for higher h and towards red for lower h. In
the same figure 1, we show corresponding log-histograms of the local Hélder
exponent.? Each h measures a so-called singularity strength and thus a his-
togram provides a way to evaluate the ‘singularity spectrum’. In other words,
the local h measures local contribution to the multifractal spectra [5].

Stationarity in system/model characteristics like local h or spectral charac-
teristics is, however, rarely encountered in real life experiments. Real life time
series samples may ‘behave multifractally’ on a fixed time scale and a biolog-
ical multifractal system may undergo dynamic changes in its characteristics
affecting the spectrum of h. Such non-stationarity of a systems’ universal char-
acteristics may, in fact, prove important for the more complete description of
the system. The system may behave quasi-multifractally in free running con-

2 They are made by taking the logarithm of the measure in each histogram bin. This
conserves the monotonicity of the original histogram, but allows us to compare the
log-histograms with the spectrum of singularities D(h). By following the evolution
of the log-histograms along scale, one can extract the spectrum of the singularities
D(h) (multifractal spectrum).
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Figure 1. Left: Example time series with local Hurst exponent indicated in colour:
the record of healthy heartbeat intervals and white noise. The background colour
indicates the Holder exponent locally, centred at the Hurst exponent at green; the
colour goes towards blue for higher h and towards red for lower h. Right: The
corresponding log-histograms of the local Holder exponent.

ditions, but the non-linear interactions within the system may be affected by
changing environmental influence. As a result the main characteristics, like
mean h or spectrum width, may change with time. Often such changes may
in fact show a direct correspondence with the environmental influence [6].

Of course direct influence is not the only relationship possible and in some
cases a long-term influence on system’s characteristics is possible. A sad exam-
ple of such long term influence are the many malfunctions of heart functioning.
In the following, we will address in greater detail the issue of the malfunction-
ing of the fetal heart during labour and relate it to the non-stationarity of,
among others, the local h (roughness exponent) characteristic of the heartbeat.

Methods of wavelet transform modulus maxima (WTMM) based multifractal
analysis (MF) and detrended fluctuation analysis (DFA) have been demon-
strated to be suitable for capturing scaling and correlation characteristics of
the fluctuations in human heartbeat intervals [3,7-9]. These characteristics,
obtained under a variety of conditions, have also been shown to reflect devi-
ations in the heartbeat due to a variety of malfunctions [3,4,10,11] and phys-
iological behaviour [6,12,13]. Obviously, these results can be considered for
clinical applications.

Unfortunately, such standard methods of statistical analysis of heartbeat sig-
nals are not directly applicable to the practical problem of evaluating (the



characteristics of) the fetal heartbeat in real time during labour. One obvious
reason for this is that these statistical techniques use long stretches of data to
provide estimates of global measures like correlation exponents or multifractal
spectra. A typical measurement requires over 30,000 samples (2'°) to pro-
vide reliable estimates of scaling for the extraction of exponents and reliable
transformation from scaling exponents to the domain of multifractal spectra.
The typical heart rate of a fetus is about 130 beats per minute. The required
time stretch for acquiring a sufficiently long data set (2'°) is thus about 250
minutes. By this time, the baby is often already born. Decisions about an
intervention (such as a Caesarean section) have to be taken on the basis of
10 — 60 minutes’ observations of the heartbeat.?

Another, related, reason is that fetal heartbeat during labour is a highly dy-
namic process which needs to be monitored in real time. It is evident that
in the case of the process evolving in time, we cannot expect that a global
multifractal description is going to be sufficient. Such a global multifractal
description may well be valid in isolated conditions and may well characterise
universality class of the phenomenon [3], but for the tasks of differentiating
between cases and temporal description, more sensitive measures are needed.

Such measures may well be derived from the proven description of the system
in isolated conditions. The local Holder exponent is such a potentially useful
characteristic. In an isolated stationary case, it measures the local contribu-
tion to the multifractal spectra. But in dynamic conditions when the system
is subjected to changes the temporal fluctuations of this characteristic can
provide invaluable insight into changing conditions of the system.

3 Exploiting non-stationarity of the local Holder exponent A in a
heuristic model

In the case of the fetal heartbeat during labour, there is no reason why the local
Hélder exponent h(V;) of the variability V; component of the fetal heartbeat
intervals should be stationary. It reflects dynamic changes in the condition of
the fetus and the degree of stress to which it is subjected. Despite the fact that
stress has a rapid effect on the heartbeat, the effects on the state of the fetus
are not always immediate. This is why short dynamic changes in heartbeat
characteristics (which determine the multifractal picture) may not be rele-
vant and not representative of the state of the fetus. Rather than expanding

3 Tt has to be noted that fetal heartbeat is the only indicator of the state of the
fetus. Therefore the characteristics determined from it are crucial in taking the
decision to carry out an operative delivery or perform a fetal scalp blood sample to
assess the metabolic status in case of suspected hypoxia.
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Figure 2. Two different time series of fetal heartbeat intervals were analysed using
the cumulative Holder exponent based real time indicator. The time series corre-
spond with one good outcome (healthy) and one bad outcome (hypoxia). The good
outcome can be identified by the indicator oscillating near zero or steadily increas-
ing. In the case of hypoxia, the indicator plunges (down towards negative values).
Problems can occur at any moment during labour, even after a stable condition, as
is visible in the bad outcome plot. The first part of the plot is flat since this period is
required for initialisation - acquiring a reference for the upper value for the Holder
exponent evaluation. Both the cumulative Holder exponent hcym (V;) (red line) and
the deviation of the Holder from the reference value A,y = 0.05 (blue filled curve)
are plotted. The heym(V;) has been rescaled by a factor 0.01.

the observation window, we suggested [14,15] using a cumulative indicator,
designed to capture the non-stationarity of the local h of the variability com-
ponent of the fetal heartbeat (in fact the non-stationarity of the short-time
(1000-samples) mean of the local h). *

The cumulative h is defined from the beginning of the observation and with
respect to some normal reference level A, :

%

hcum(‘/z) = - Z(heff(‘/l) - href) . (1)

=1

The minus sign is introduced to give the Ay, indicator increasing direction
when the level of local correlations is lower than h,.s. This corresponds with a
healthy condition. The case of higher correlations is associated with problems
and, therefore, the accumulation of a positive difference (hesr(V)) — hres) will
lead to decreasing cumulative h.

* To use the linear integral of the non-stationarity component of the variability of
the fetal heartbeat is simply a heuristic. Of course, other functional dependence
than linear integral is possible but the discovery of a more suitable model of such
possible functional dependence is the subject of our future research, involving the
techniques described in section 4.



We have tested several examples of fetal heartbeats and found a good cor-
relation with the fetal outcome, as determined by the blood tests [14,15]. In
figure 2, we plot two cases, one representing good outcomes and one bad out-
comes. The cumulative indicator steadily increasing or remaining within some
margin of fluctuations indicates no problems and a good prediction. When the
indicator plunges down, it calls for intervention. This can, of course, happen
at any moment during labour. The nature of this process is dramatically non-
stationary, and a period of positive evaluation can be interrupted at any stage
(for example by the occlusion of the umbilical cord due to movement). One of
the examples shown (figure 2 right) shows the cumulative indicator plunging
after a prolonged homeostasis.

4 Reasoning with non-stationarities - data mining or looking for
the unknown model

The idea of an automatic system that provides some kind of support to an
expert in reasoning about the (experimental) evidence had its origins some
thirty years ago (in what initially was called ‘expert systems’). However, it was
not until the last decade, that the seminal paper by Lauritzen and Spiegel-
halter [16] provided the necessary machinery to achieve such an ambitious
goal. It made it feasible, in the so-called ‘probabilistic expert systems’, for the
probabilities to be propagated through the variables involved in the reasoning
process. Such propagation makes it possible to obtain probabilities assigned to
the values of the variables involved in the reasoning problem, given evidence
provided about the status of another set of variables (usually exogenous ones).

This framework generalises the logistic model, used very often for medical
problems, in two ways. First, because there is no limitation of binary values
to variables, but one can arbitrarily assess the values of variables involved
when the values of the others changes. Second, because this framework makes
it possible to express the complex relationships between the variables in terms
of conditional independencies, which goes a step further than the usual hi-
erarchical modelling of the factors in a logistic model [17]. The process of
propagating probabilities is fast and makes it possible to obtain a response
in real time as new evidence (in medical terms ‘symptoms’) is entered to the
system. 5

Another use of a probabilistic expert system is the ability to provide insight
into the data used.This data may contain clues that can uncover facts relevant
to the domain where we are using it (in our case obstetrics). In particular, re-

5 There is already commercial software for this purpose being successfully used
(http://www.hugin.com, http://www.norsys.com).



cent work in Bayesian networks and simulation methods, allows the extraction
of such valuable information from data.

Thus, the approach we use combines expert knowledge of the subject matter
with an automatic recovery of the relationships in the system from the current
data available [21,22]. This, in turn, may lead to the discovery of unknown
relationships that are relevant to the domain expert.
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Figure 3. Simplified version of the best dependence network obtained in the exper-
iment. We split the time series sub-network (denoted: ‘temporal characteristics’, in
rectangle) from the main one. Note that heartbeat temporal characteristics are only
connected to biochemical variables (fetoblood sample - fbs, fetalbiostatus) and fetal
outcome AP* by decisions of the obstretician (marked by the diamond shapes).

It is important to realise that in our approach we are looking for an unknown
model, therefore not just model-fitting. This is because we do not know ‘a

6 For example, software BUGS [18] (http://www.mrc-bsu.cam.ac.uk/bugs) has
proven useful in the Bayesian modeling of complex biomedical systems [19,20].



piori’ the dimensionality of the system and do not know the functional depen-
dence between the parameters (experimentally observed, ‘input’ and ‘output’
values). In particular we also do not know which parameters are relevant.
This approach, especially when ‘automated’ and applied to large volumes of
experimental data, is sometimes referred to as data mining.

In our experiment, about a thousand cases have been investigated, continuous
variables have been discretised and time series characteristics derived from
the heartbeat for three 1/2 hour intervals just before birth. The time series
characteristics comprise [14,15]:

(1) short-time average heartrate level - ‘baseline’
(2) short-time average integral of accelerations and decelerations
(3) cumulative Holder exponent.

7

Next, models were generated by Monte Carlo simulation and tested by maxi-
mum likelihood criterion. The best models were evaluated by human experts.
Among the recovered facts, see figure 3, we obtained primary agreement of
the best networks with the expert’s knowledge.

In particular we discovered that heartbeat features are connected to the fetal
outcome variables like AP scores and biochemical variables (fetoblood sam-
ples - fbs) via the decisions of the obstretitian. This captures the known fact
that the fetal heartbeat characteristics are used by the obstretitian but are
not necessarily directly related to the fetal outcome. The exact nature of the
correlation between heartbeat characteristics and the fetal outcome is the sub-
ject of future work. In particular the functional temporal dependence between
the heartbeat characteristics and the fetal outcome is a potentially interesting
direction of study.

We have been able to recover correlations between features and their mono-
tonic temporal ordering (dependence). Cumulative h has been demonstrated
to play a substantial role in the network of dependencies, on a par with the
established monitoring quantities like mean baseline heartrate and acceler-
ation/decceleration integral. We recovered monotonic temporal relationships
in the main temporal characteristics of the time series, as well as in the fetal
outcome descriptors AP1, AP5, AP10 (the state of the baby 1, 5, 10 minutes
after birth).

As a curiosity we have also confirmed less obvious relationships which were
validated by the obstretrics expert - the age of the mother seems not to be
correlated with other variables like the fetal outcome (our sample contained

7 These are sudden drops in the heartrate of the fetus, which can be caused by a
number of events such as compression of the umbilical cord, increased intracranial
pressure of the fetus during contractions or (temporary) hypoxia.



cases spanning 14-42 years of age and effectively covering the interval from
21-35 years - Gaussian distribution with mean 28 and stdev 7).

Also, there seems to be a gender related asymmetry in the recovered model.
The gender of the baby is linked to the outcome variables like weight and
growth retardation. This seems to confirm a known fact that males are weaker.

5 Conclusions and suggestions for future developments

We have demonstrated a case of ‘automated’ statistical experimentation moti-
vated by large number of experiments and non-stationarity of model descrip-
tion.

We have elaborated on the example where non-stationarity arises in multifrac-
tal description for fetal heartbeat during labour. We have used the failure of
the model to provide useful characteristics of the fetal heartbeat in real time
during labour.

In particular we have discovered that heartbeat features (including non-stationarity
based cumulative A measure) are connected to the fetal outcome variables like
AP scores and fbs via decisions of the obstretitian.

We have shown that the heuristic of linear integral (cumulative indicator)
of the non-stationarity component of the variability of the fetal heartbeat
is relevant. Other than linear integral dependence is possible and may be
more accurate for the functional form of dependence on the non-stationarity
(measure) of local h. The discovery of such a possibly more suitable model of
this functional dependence will be the subject of our future research, involving
the techniques described in section 4.

As a closing remark - we have discovered that although men (the male gender)
may well be blamed for a crazy life style as the primary cause of their shorter
life span, the truth of the matter is, we are predetermined by nature from the
very start :-).
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